เปรียบเทียบความถูกต้อง (Accuracy) กับการแปลความ (Explainability) ของโมเดลต่างๆ

ในการสร้างโมเดล Classification นั้นมีหลายเทคนิคครับ บางเทคนิคก็แปลความ (Explainability) ได้ง่าย บางเทคนิคก็แปลความยากแต่ความถูกต้อง (Accuracy) สูงครับ ภาพด้านล่างเป็นการแสดงให้เห็นว่าเทคนิคต่างๆ นั้นสามารถอธิบายได้ง่ายหรือยากและมีความถูกต้องมากน้อยแค่ไหนครับ  โดยเทคนิคต่างๆ มีดังนี้ครับ 1. Linear Regressionเป็นการสร้างสมการเส้นตรง (เช่น y = mx+c) มาสร้างโมเดลเพื่อพยากรณ์ค่าตัวเลขต่างๆ ข้อดีของการเทคนิคนี้คือโมเดลที่ได้แปลความได้ง่ายเพราะแสดงในรูปของสมการทางคณิตศาสตร์ที่เราสามารถแทนค่าเข้าไปได้เลย 2. Logistic Regression เป็นการสร้างสมการคณิตศาสตร์เพื่อแบ่งแยก (classify) ข้อมูลออกเป็น 2 กลุ่มคำตอบครับ เทคนิคนี้เป็นอีกเทคนิคที่นิยมให้เนื่องจากแปลความโมเดลได้ง่ายครับ และแสดงให้เห็นถึงความสำคัญของตัวแปร (หรือ Feature) ได้ด้วยครับ 3. k-Nearest Neighbours (k-NN) เป็นการสร้างโมเดลโดยมีแนวคิดว่าข้อมูลที่มีลักษณะคล้ายกันน่าจะอยู่ในกลุ่ม