

Machine Learning for Business

(workshop with MarTech App)

Eakasit Pachararwongsakda, Ph.D.

eakasit@datacubeth.ai

Co-founder and Data Science Team Lead
Cube Analytics Consulting Co.,, Ltd.

ควรเสนอลูกค้าแบบไหนดี ?

20-30 Ü

http://www.datacubeth.ai http://www.datacubeth.ai

Customer	Gender	Age	Location
1	M	40-50	กรุงเทพ
2	F	40-50	ปทุมธานี
3	M	30-40	กรุงเทพ
4	M	40-50	ายรม
5	M	40-50	กรุงเทพ
6	M	40-50	กรุงเทพ
7	M	40-50	กรุงเทพ
8	F	40-50	กรุงเทพ
9	M	30-40	กรุงเทพ
10	M	30-40	เชียงใหม่

Customer	Gender	Age	Location
1	M	40-50	กรุงเทพ
2	F	40-50	ปทุมธานี
3	M	30-40	กรุงเทพ
4	M	40-50	ายรัย
5	M	40-50	กรุงเทพ
6	M	40-50	กรุงเทพ
7	M	40-50	กรุงเทพ
8	F	40-50	กรุงเทพ
9	M	30-40	กรุงเทพ
10	M	30-40	เชียงใหม่

Customer	Gender	Age	Location
1	M	40-50	กรุงเทพ
2	F	40-50	ปทุมธานี
3	M	30-40	กรุงเทพ
4	M	40-50	ายอยุธยา
5	M	40-50	กรุงเทพ
6	M	40-50	กรุงเทพ
7	M	40-50	กรุงเทพ
8	F	40-50	กรุงเทพ
9	M	30-40	กรุงเทพ
10	M	30-40	เชียงใหม่

ผู้เกย 40-50 ปี กรุงเทพ

Customer	Gender	Age	Location
1	M	40-50	กรุงเทพ
2	F	40-50	ปทุมธานี
3	M	30-40	กรุงเทพ
4	M	40-50	อยุธยา
5	M	40-50	กรุงเทพ
6	M	40-50	กรุงเทพ
•••			
999,999	M	30-40	กรุงเทพ
1,000,000	M	30-40	เชียงใหม่

ควรเสนอ

ลูกกั

แบบไหนดี?

What is Machine Learning (ML)?

"Machine learning is a branch of computer science that allows computers to automatically infer patterns from data without being explicitly told what these patterns are."

- https://www.akkio.com/beginners-guide-to-machine-learning

reference: https://levity.ai/blog/difference-machine-learning-deep-learning

Artificial Intelligence (AI)

 The theory and development of computer systems able to perform tasks normally requiring human intelligence

Machine Learning (ML)

Gives computers "the ability to learn without being explicitly programmed"

Deep Learning (DL)

 Machine learning algorithms with brain-like logical structure of algorithms called artificial neural networks

Prescriptive Analytics

Optimization

"What's the best that can happen?"

Experimental design

"What happen if we try this?"

Predictive Analytics

Predictive modeling

"What will happen next?"

Forecasting/extrapolation

"What if these trends continue?"

Statistical analysis

"Why is this happening?"

Descriptive Analytics

Alerts

"What action are needed?"

Query/drill down

"What exactly is the problem?"

Ad hoc reports

"How many, how often, where?"

Standard reports

"What happened?"

- Descriptive analytics (aka business intelligence [BI] or performance reporting)
 - provides access to historical and current data. It
 provides ability to alert, explore, and report using both
 internal and external data from variety of sources.

Predictive analytics

 uses quantitative techniques (e.g., propensity, segmentation, network analysis and econometric forecasting) and technologies (such as models and rulebase systems) that use past data to predict the future

Prescriptive analytics

 uses a variety of quantitative techniques (such as optimization) and technologies (e.g., models, machine learning and recommendation engines) to specify optimal behaviors and actions

Prescriptive Optimization Analytics "What's the best that can happen?" **Experimental design** "What happen if we try this?" **Predictive Predictive modeling Analytics** "What will happen next?" Competitive advantage Forecasting/extrapolation "What if these trends continue?" Statistical analysis "Why is this happening?" **Alerts Descriptive** "What action are needed?" **Analytics** Query/drill down "What exactly is the problem?" Ad hoc reports "How many, how often, where?" **Standard reports** "What happened?"

Sophistication of intelligence

Reference: Competing on Analytics: The New Science of Winning, 2nd Edition

Reference: Obviously Al

Reference: Obviously Al

Reference: Obviously Al

http://www.datacubeth.ai http://www.datacubeth.ai

Time Series - How to Predict Revenue

Rapidly build a time series machine learning model that predicts revenue using your historical data.

Time Series - Predicting Sales

Build a time series machine learning model that predicts sales quickly using your historical data.

Time Series - Energy Consumption

Predict electricity demand using your historical data and make decisions in power system planning and operation.

Reference: Obviously Al

STEP	DESCRIPTION
Business Understanding	Define the project.
Data Understanding	Examine the data; identify problems in the data.
Data Preparation	Fix problems in the data; create derived variables.
Modeling	Build predictive or descriptive models.
Evaluation	Assess models; report on the expected effects of models.
Deployment	Plan for use of models.

Created by Akkio

Reference: https://www.akkio.com/post/45-no-code-ai-tools-complete-guide

http://www.datacubeth.ai http://www.datacubeth.ai

http://www.akkio.com

http://www.datacubeth.ai http://www.datacubeth.ai

- Clustering เป็นการแบ่งกลุ่มข้อมูลที่มีลักษณะคล้ายๆ กันให้อยู่ในกลุ่มเดียวกัน
- แบ่งกลุ่มลูกค้าตามพฤติกรรมการซื้อสินค้า
 - ลูกค้าที่ชอบซื้อสินค้าที่วางตลาดใหม่
 - ลูกค้าที่ชอบซื้อสินค้าตอนลดราคา

- แบ่งกลุ่มลูกค้าตามพฤติกรรมการรับข้อความในช่องทางต่างๆ (channel preference)
 - ลูกค้ากลุ่มที่ชอบอ่าน LINE และ email
 - ลูกค้าที่ชอบเปิดอ่านเฉพาะ Email

Customer ID	Email	SMS	LINE
C0001	10	3	1
C0002	1	10	2
C0003	1	1	10
C0004	8	2	1
C0005	10	1	1
C0006	2	9	1
C0007	1	1	15
C0008	0	1	9

Machine Learning

http://www.datacubeth.ai http://www.datacubeth.ai

Customer ID	Email	SMS	LINE	Cluster
C0003	1	1	10	LINE
C0007	1	1	15	LINE
C0008	0	1	9	LINE
C0001	10	3	1	Email
C0004	8	2	1	Email
C0005	10	1	1	Email
C0002	1	10	2	SMS
C0006	2	9	1	SMS

Customer ID	Email	SMS	LINE	Cluster
C0003	1	1	10	LINE
C0007	1	1	15	LINE
C0008	0	1	9	LINE
C0001	10	3	1	Email
C0004	8	2	1	Email
C0005	10	1	1	Email
C0002	1	10	2	SMS
C0006	2	9	1	SMS

Customer ID	Email	SMS	LINE	Cluster
C0003	1	1	10	LINE
C0007	1	1	15	LINE
C0008	0	1	9	LINE
C0001	10	3	1	Email
C0004	8	2	1	Email
C0005	10	1	1	Email
C0002	1	10	2	SMS
C0006	2	9	1	SMS

http://www.datacubeth.ai http://www.datacubeth.ai

The goal of propensity modeling is to find consumers who have a relatively high probability of behaving in a certain way or committing a certain action in the future.

Propensity to try a new product

 Consumers who currently do not buy a certain product but have a high propensity to buy it in the future are good targets for acquisition campaigns.

Propensity for category expansion

Consumers who have high propensity to switch from one category of products to another or
to try a new category are good targets for up-selling or cross-selling campaigns. An example of
such an audience are consumers who are likely to switch from casual to luxury products.

Propensity to buy more

 Consumers who are likely to increase their average purchase quantity of a product are the right targets for maximization campaigns.

 The goal of propensity modeling is to find consumers who have a relatively high probability of behaving in a certain way or committing a certain action in the future.

Propensity to churn

• Customers who are likely to unsubscribe from a service or stop buying a product can be targeted in retention campaigns.

Propensity to engage

• Propensity to engage is the **probability of responding to a marketing action**, for example, to click on an email link.

Download example data: https://tinyurl.com/4zby6cuv

ขอบคุณทุกคนที่สนับสนุนเรามาตลอด ดาต้า คิวบ์ ก้าวเข้าสู่ปีที่ 10

WWW.DATACUBETH.AI

- website: http://www.datacubeth.ai
- facebook: http:facebook.com/datacube.th หรือ http://facebook.com/sit.ake
- email: eakasit@datacubeth.ai
- lineID: eakasitp